
IIT-Kanpur

Undergraduate Project 2

Monocular Visual Odometry

Author:
Avi Singh

Supervisor:
Dr. KS Venkatesh

April 24, 2015

Contents

1 Introduction 2
1.1 Why Monocular? . 2
1.2 Application . 2
1.3 Related Work . 3

2 The Algorithm 3
2.1 Problem Formulation . 3
2.2 Algorithm Outline . 4
2.3 Undistortion . 4
2.4 Feature Detection . 4
2.5 Feature Tracking . 5
2.6 Essential Matrix Estimation 5
2.7 Computing R, t from the Essential Matrix 6
2.8 Constructing Trajectory . 6
2.9 Heuristics . 7

3 Results and Conclusions 7

4 Future Work 7

5 References 9

1

Abstract

This report explains a monocular visual odometry algorithm, which
has been implemented in OpenCV/C++. We report results on the
KITTI dataset (using only one image of the stereo dataset). Since it
is a monocular implementation, we cannot do absolute scale estima-
tion, and thus that quantity is used from the ground truths that we
have.

1 Introduction

Visual Odometry is the estimation of 6-DOF trajectory followed by a mov-
ing agent, based on input from a camera rigidly attached to the body of the
agent. The camera might be monocular, or a couple of cameras might be
used to form a stereo rig. In the monocular approach, it is not possible to
obtain the absolute scale of the trajectory, while it is certainly possible to do
so for the stereo approach, assuming we know the baseline (distance between
the two cameras of the stereo rig).
Visual Odometry has attracted a lot of research in the recent years, with
new state-of-the-art approaches coming almost every year[14, 11]. One of
it’s advantages over wheel or inertial odometry methods is that it can be
used on any vehicle (air, underwater, land), and costs relatively cheap sen-
sors (as compared to high precision Inertial Measurement Units). One of
its disadvantages compared to other methods is that it is computationally
expensive, and can work only in well-lit areas which have sufficient texture
to recognize and track feature points.

1.1 Why Monocular?

The monocular approach is still interesting because the stereo case degener-
ates to the monocular case when the baseline is too small as compared to
the distances of landmarks from the camera.

1.2 Application

Visual Odometry was originally intended to be used on Mars Rover [5], where
there is no GPS and wheel odometry becomes unreliable due to slip on the
sandy martian surface. In recent years, visual odometry has also found uses

2

in autonomous driving, wearable electronics, augmented reality, and even
gaming [1].

1.3 Related Work

A detailed review on the progress of Visual Odometry can be found on this
two-part tutorial series[6, 10]. Work on visual odometry was started by
Moravec[12] in the 1980s, in which he used a single sliding camera to esti-
mate the motion of a robot rover in an indoor environment. It was a stereo
approach (the sliding camera took one photo at its original position and an-
other on sliding to its other position). A separate feature detector, called the
Moravec edge detector was developed to track points over several frames.
Most of the early stereo approaches (before 2004) involved triangulating the
3D points from the stereo pair in successive frames and then aligning them
using least squares minimisation or the iterative closes point algorithm. This
was however completely changed by Nister [7] who used a 3D to 2D minimi-
sation, that was well-suited to deals with the anisotropic errors seen in 3D
triangulation (errors in depth direction are more than those in the other two
dimensions.
Interest in monocular approaches started increasing with the rise in popu-
larity of Micro Aerial Vehicles (MAVs), and several computationally efficient
algorithms have been developed specifically for MAVs like SVO[9].

2 The Algorithm

2.1 Problem Formulation

Input We have a stream of gray scale images coming from a camera. Let
the frames, captured at time t and t+1 be referred to as I t, I (t + 1). We
have prior knowledge of all the intrinsic parameters, obtained via any one of
the numerous calibration toolboxes available[2] along with a chessboard.

Output For every pair of images, we need to find the rotation matrix R and
the translation vector t, which describes the motion of the vehicle between
the two frames. The vector, t can only be computed upto a scale factor in
our monocular scheme.

3

2.2 Algorithm Outline

1. Capture images: I t, I t+1,

2. Undistort the above images.

3. Use FAST algorithm to detect features in I t, and track those features
to I t+1. A new detection is triggered if the number of features drop
below a certain threshold.

4. Use Nister’s 5-point alogirthm with RANSAC to compute the essential
matrix.

5. Estimate R, t from the essential matrix that was computed in the pre-
vious step.

6. Take scale information from some external source (like a speedometer),
and concatenate the translation vectors, and rotation matrices.

2.3 Undistortion

Distortion happens when lines that are straight in the real world become
curved in the images. This step compensates for this lens distortion. It
is performed with the help of the distortion parameters that were obtained
during calibration.

2.4 Feature Detection

Our approach uses the FAST[8] corner detector. Suppose there is a point
P which we want to test if it is a corner or not. We draw a circle of 16px
circumference around this point as shown in 1. For every pixel which lies
on the circumference of this circle, we see if there exits a continuous set of
pixels whose intensity exceed the intensity of the original pixel by a certain
factor I and for another set of contiguous pixels if the intensity is less by
at least the same factor I. If yes, then we mark this point as a corner. A
heuristic for rejecting the vast majority of non-corners is used, in which the
pixel at 1,9,5,13 are examined first, and atleast three of them must have a
higher intensity be amount at least I, or must have an intensity lower by
the same amount I for the point to be a corner. This particular approach

4

is selected due to its computational efficiency as compared to other popular
interest point detectors such as SIFT.

Figure 1: Image taken from original FAST paper[8]

2.5 Feature Tracking

Kanade-Lucas-Tomasi[3] feature tracker is used for finding sparse pixel wise
correspondences. The KLT algorithm assumes that a point in the nearby
space, and uses image gradients to find the best possible motion of the feature
point. If, during the tracking procedure, the number of feature points go
below 2000, then a new detection is triggered.

2.6 Essential Matrix Estimation

Once we have point-correspondences, we have several techniques for the com-
putation of an essential matrix. The essential matrix is defined as follows:

yT1 Ey2 = 0 (1)

Here, y1, y2 are homogenous normalised image coordinates. While a simple
algorithm requiring eight point correspondences exists[13], a more recent
approach that is shown to give better results is the five point algorithm [4].
It solves a number of non-linear equations, and requires the minimum number
of points possible, since the Essential Matrix has only five degrees of freedom.

5

RANSAC If all of our point correspondences were perfect, then we would
have need only five feature correspondences between two successive frames to
estimate motion accurately. However, the feature tracking algorithms are not
perfect, and therefore we have several erroneous correspondence. A standard
technique of handling outliers when doing model estimation is RANSAC. It
is an iterative algorithm. At every iteration, it randomly samples five points
from out set of correspondences, estimates the Essential Matrix, and then
checks if the other points are inliers when using this essential matrix. The
algorithm terminates after a fixed number of iterations, and the Essential
matrix with which the maximum number of points agree, is used.

2.7 Computing R, t from the Essential Matrix

Another definition of the Essential Matrix (consistent) with the definition
mentioned earlier is as follows:

E = R[t]x (2)

Here, R is the rotation matrix, while [t]x is the matrix representation of a
cross product with t. Taking the SVD of the essential matrix, and then
exploiting the constraints on the rotation matrix, we get the following:

E = UΣV T (3)

[t]x = VWΣV T (4)

R = UW−1V T (5)

2.8 Constructing Trajectory

Let the pose of the camera be denoted by Rpos, tpos. We can then track the
trajectory using the following equation:

Rpos = RRpos (6)

tpos = tpos + tRpos (7)

Note that the scale information of the translation vector t has to be
obtained from some other source before concatenating.

6

2.9 Heuristics

Most Computer Vision algorithms are not complete without a few heuristics
thrown in, and Visual Odometry is not an exception.

Dominant Motion is Forward The entire visual odometry algorithm
makes the assumption that most of the points in its environment are rigid.
However, if we are in a scenario where the vehicle is at a stand still, and a buss
passes by (on a road intersection, for example), it would lead the algorithm
to believe that the car has moved sideways, which is physically impossible.
As a result, if we ever find the translation is dominant in a direction other
than forward, we simply ignore that motion.

3 Results and Conclusions

A monocular algorithm for Visual Odometry was presented, and results on
the KITTI benchmark have been presented here. The graphs presented in
this report are for the results on one of the most challenging sequence of the
KITTI Visual Odometry benchmark (sequence 00). It was observed that the
Visual Odometry estimate was as good as the ground truth for upto 1000
frames??. Things start drifting off slightly from there, and due to the Visual
odometry being a dead reckoning method, there is no way to correct these
errors. However, the results remained within reasonable error bounds.
As far as the computational performance is concerned, the algorithms written
in C++/OpenCV runs at 4.3 FPS on a single core of Intel i7.

4 Future Work

It is intended that this work would be used for Visual Odometry on fixed wing
aircrafts like the Cessna - 206. Visual Data has been collected using a GoPro3
Black Edition, using a custom-made Cessna mount. There are challenges
being encountered in getting reliable ground truth data.Also, the fish-eye
lens of the GoPro introduces significant distortion, removal of which returns
only a cropped version of the original image, thus reducing the resolution,
and thus the scope for tracking a large number of feature point.

7

Figure 2: 1000 Frames

-200 -150 -100 -50 0 50 100
0

50

100

150

200

250

300

350

400

Visual Odometry

Ground Truth

Figure 3: 2000 Frames

-200 -100 0 100 200 300
0

50

100

150

200

250

300

350

400
Visual Odometry

Ground Truth

8

Figure 4: 4000 Frames

-300 -200 -100 0 100 200 300 400
-100

0

100

200

300

400

500

Visual Odometry

Ground Truth

5 References

[1] https://www.google.com/atap/projecttango/.

[2] http://www.mathworks.in/help/vision/examples/stereo-calibration-
and-scene-reconstruction.html.

[3] Takeo Kanade Carlo Tomasi. Detection and tracking of point features.
In CMU Tech Report, 1991.

[4] Takeo Kanade Carlo Tomasi. An efficient solution to the five-point
relative pose problem. In Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2004.

[5] Yang Cheng, Mark Maimone, and Larry Matthies. Visual odometry on
the mars exploration rovers. In SMC05, 2005.

[6] Friedrich Fraundorfer Davide Scaramuzza. Visual Odometry: Part 1.
IEEE Robotics and Automation Magazine, 2011.

[7] J.Bergen D.Nister, O.Naroditsky. Visual odometry. In IEEE Interna-
tional Conference on Computer Vision and Patter Recognition, 2004.

[8] Tom Drummond Edward Rosten. Machine learning for high-speed cor-
ner detection. In European Conference on Computer Vision, 2006.

9

[9] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast
semi-direct monocular visual odometry. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 2014.

[10] Davide Scaramuzza Friedrich Fraundorfer. Visual Odometry: Part 2.
IEEE Robotics and Automation Magazine, 2012.

[11] Takeo Kanade Herman Badino, Akihiro Yamamomto. Visual odometry
by mutli-frame integration. In International Workshop on Computer
Vision for Autonomous Driving, 2014.

[12] H.Moravec. Obsacle Avoidance and Navigation in the Real worlf by a
seeing robot rover. PhD thesis, Stanford University, 1980.

[13] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene
from two projections. In Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2004.

[14] Guangming Xiong Davide Scaramuzza Yanhua Jiang, Huiyan Chen. Icp
stereo visual odometry for wheeled vehicles based on a 1dof motion prior.
In IEEE International Conference on Robotics and Automation, 2014.

10

