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Introduction
Detecting and recognizing human activities is of great interest in sev-
eral fields, with one being personal robotics. There are numerous chal-
lenges in activity recognition. Most of the activities occur in cluttered
environments, in an uncontrolled manner. Different people have dif-
ferent speeds and mannerisms while performing these activities. This
paper presents an approach to detect activities under such conditions.
Some of the activities detected and recognized are cooking, drinking
water, brushing teeth.

Previous work has focused mainly on RGB videos, or on the usage
of RFID sensors. RGB videos lead to poor accuracy even in case of
uncluttered environments, while the RFID methods are too intrusive as
they require the placement of RFID tags on people and objects.

The model used in this a paper is a two-layered maximum entropy
Markov model. This model exploits the inherent hierarchical nature of
human activities. For example, brushing a teeth involves several sub-
activities such as picking up the toothbrush, squeezing the tooth-paste,
actual brushing etc. The graphical model is not fixed, and an on-the-fly
graph structure selection techniques is described.

Related Work
A lot of work has been done in the field of human activity recognition.
Some of the common approaches and their limitations have been listed
below:
1. One approach is to use space-time features to model points of inter-

est in the video. Some authors have suggested methods to add more
information to these features.However, this approach is only capable
of classifying, rather than detecting activities.

2. Other approaches include filtering techniques and sampling of video
patches.

3. Hierarchical techniques for activity recognition have been used as
well, but these typically focus on neurologically-inspired visual
cortex-type models. There is a blind adhere to models of the visual
cortex which may not always be correct.

4. Other approaches includes the use of Hidden Markov Mod-
els(HMMs). However it has been argued in literature that CRFs
and MEMMs overcome limitations posed by HMMs. CRFs and
MEMMs enables longer term interaction among observations which
HMMs don’t.

Proposed Model
The model should incorporate different nuances in the human activity.
An activity comprises of a series of sub-activities done in some par-
ticular order. In order to incorporate the hierarchical nature of human
activity, a maximum entropy Markov model is proposed [Fig 1.] and
its salient features are explained as below:
• xtdenote the features extracted from the articulated skeleton model

at time frame t.
• Every frame is connected to high-level activities through the mid-

level sub-activities. High-level activities do not change every frame,
we do not index them by time. Rather, we simply write zi to denote
the ith high-level activity. Activity i occurs from time ti1+1 to time
ti.
• Every frame is connected to a sub activity.yt represents the sub ac-

tivity connected to frame at time t. The sub activities are intern

connected in sets to an activity. Thus, {yti−1+1, . . . , yti}is the set of
sub-activities connected to activity zi

Figure 1: Proposed Model

Feature Extraction

Skeletal Features
PrimeSense provides a system for skeleton tracking from RGBD
data.It gives us the three-dimensional Euclidean coordinates for fifteen
joints, and rotation matrices for their orientations. All measurements
are with respect to the frame of the sensor. Features computed from
this data are as follows:

1. Body pose: Since features with respect to the sensor are not use-
ful, the rotation matrices for 10 joints are calculated with respect to
the torso, and represented using quaternions. Whether a person is
standing or sitting, or leaning over is computed using the position
each foot with with respect to the torso, and by computing head and
hip joint angles with respect to the vertical.

2. Hand Position: The position of the two hands are computed with
respect to the head and the torso. The hand positions are also ob-
served for the last six frames, and the maximum and minimum hand
positions are extracted from them.

3. Motion Information Nine frames are selected from the last three
seconds, and the joint rotations that have occurred are computed
with respect to each these nine frames.

HOG Features
Histogram of Oriented Gradient (HOG) features are computed, which
give us a count of how frequently a particular gradient is seen in the
ROI of an image. Using the skeletal data from PrimeSense, a bounding
box is drawn around the head, torso, left arm, right arm. HOG features
are then computed inside each of these bounding boxes.

Learning and Inference

Learning
A Gaussian Mixture Model is used to cluster the original data, and
each individual cluster is treated as a separate sub-activity. Clusters
are also generated from some negative examples (no activity happen-
ing), so that the system is not prone to errors on observing random
activities. We need to evaluate the values for the following terms from
the training data in order to perform inference.

1. P (yt|xt): This term models the dependence of the sub-activity label
yt on the input features xt. The GMM used in the previous step is
used here too.

2. P (yti−m|yti−m−1,zi):For all activities except neutral, this ta-
ble is built from observing the transition of posterior probabil-
ity from the soft cluster of Gaussian Mixture model at each
frame. For neutral activities, P (yti−m|yti−m−1,zi=N ) ∝ 1 −
σzi 6=NP (y

ti−m|yti−m−1,zi=N )

3. P (zi|zi−1) Set manually.

Inference
The joint probability is computed as follows:

P (zi, y
ti−1+1 · · · yti|Oi, zi−1)

= P (zi|Oi, zi−1)P (yti−1+1 · · · yti|zi, Oi, zi−1)

= P (zi|zi1) ·
ti∏

t=ti−1+2

P (yt|yt−1, zi, xt)

·
∑
yti−1

P (yti−1+1|yti−1, zi, xti−1+1)P (yti−1)

The unknown terms in the equation above are derived as :

P (yt|yt−1, zi, xt) =
P (yt−1, zi, xt|yt)P (yt)

P (yt−1, zi, xt)

From the model, the following conditional independence assumption
are made: yt1 and zi are independent from xt given yt is made and
under this we get

P (yt|yt−1, zi, xt) =
P (yt|yt−1, zi)P (yt|xt)

P (yt)

Finally the entire formula can be written as :

P (zi, y
ti−1+1 · · · yti|Oi, zi−1)

= P (zi|zi−1)

·
∑
yti−1

P (yti−1+1|yti−1, zi)P (yti−1+1|xti−1+1)
P (yti−1 + 1)

P (yti−1)

·
ti∏

t=ti−1+2

P (yt|yt−1, zi)P (yt|xt)
P (yt)

This formula can be factorized as follows :

P (zi, y
ti−1+1 · · · yti|Oi, zi−1) = A ·

ti∏
t=ti−1+2

B(yt−1, yt)

To maximize the probability the individual terms are maximized as:

max P (zi, y
ti−1+1 · · · yti|Oi, zi−1) = max

yti−1+1
A

· max
yti−1+2

B(yti−1+1, yti−1+2) · · ·max
yti
B(yti−1, yti)

Graph Selection
Using the above results we can find the set of yt ’s that maximize the
joint probability P (zi, yti−1+1 · · · yti|Oi, zi−1), the probability of an ac-
tivity zi being associated with the ith substructure and the previous ac-
tivity. Our task is to use that to compute the probability of zi given all
observations up to this point. Simply trying all the possibilities would
be intractable and so we use a dynamic programming approach which
is explained as follows :

•We are at some time t; we wish to select the optimal graph struc-
ture given everything we have seen so far. We will define the graph
structure inductively based on graph structures that were chosen at
previous points in time. Let Gt′ represent the graph structure that
was chosen at some time t′ < t. As a base case, G0 is always the
empty graph.

• For every t′ < t , define a candidate graph structure G̃t
′
t consisting

of Gt′, followed by a single substructure from time t′ + 1 to time t
connected to a single high-level node zi.

•Given the set of candidate structures {G̃t′t |1 ≤ t′ < t} , the plan is
to find the graph structure and high-level activity to maximize the
likelihood given the set of observations so far zi ∈ Z.

• LetO be the set of all observations so far. Then P (zi|O; G̃t
′
t ) is given

by the following equation :

P (zi|O; G̃t
′
t ) =

∑
zi−1

P (zi, zi−1|O; G̃t
′
t )

=
∑
zi−1

P (zi−1|O; G̃t
′
t )P (zi|O, zi−1; G̃t

′
t )

=
∑
zi−1

P (zi−1|O;Gt′)P (zi|Oi, zi−1)

• The first factor inside the summation is calculated through dy-
namic programming and the second factor is calculated from
P (zi, y

ti−1+1 · · · yti|Oi, zi−1) as described earlier.

• The optimal probability of having node i be a specific activity zi is
computed as follows and is stored for the purpose of dynamic pro-
gramming.

P (zi|O;Gt) = max
t′<t

P (zi|O; G̃t
′
t )

• Thus the prediction at time t is made by the following :

activityt = arg max
zi

P (zi|O) = arg max
zi

max
t′<t

P (zi|O; G̃t
′
t )

The selected graph is shown to be optimal and the time complexity for
the entire calculation is O(n ·m · T 2 · t).

Results

The results show an average precision/recall of 84.7%/83.2% in detect-
ing the correct activity when the person was seen before in the training
set and 67.9%/155.5% when the person was not seen before. The re-
sults are summarized in the table below.

Figure 2: Comparison of different models


