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Introduction

Detecting and recognizing human activities is of great interest in sev-
eral fields, with one being personal robotics. There are numerous chal-
lenges 1n activity recognition. Most of the activities occur 1n cluttered
environments, 1n an uncontrolled manner. Different people have dif-
ferent speeds and mannerisms while performing these activities. This
paper presents an approach to detect activities under such conditions.
Some of the activities detected and recognized are cooking, drinking
water, brushing teeth.

Previous work has focused mainly on RGB videos, or on the usage
of RFID sensors. RGB videos lead to poor accuracy even in case of
uncluttered environments, while the RFID methods are too intrusive as
they require the placement of RFID tags on people and objects.

The model used in this a paper 1s a two-layered maximum entropy
Markov model. This model exploits the inherent hierarchical nature of
human activities. For example, brushing a teeth involves several sub-
activities such as picking up the toothbrush, squeezing the tooth-paste,
actual brushing etc. The graphical model 1s not fixed, and an on-the-fly
graph structure selection techniques is described.

Related Work

A lot of work has been done 1n the field of human activity recognition.
Some of the common approaches and their limitations have been listed
below:

1. One approach 1s to use space-time features to model points of inter-
est 1in the video. Some authors have suggested methods to add more
information to these features.However, this approach 1s only capable
of classifying, rather than detecting activities.

2. Other approaches include filtering techniques and sampling of video
patches.

3. Hierarchical techniques for activity recognition have been used as
well, but these typically focus on neurologically-inspired visual
cortex-type models. There 1s a blind adhere to models of the visual
cortex which may not always be correct.

4. Other approaches includes the use of Hidden Markov Mod-
elstcHMMs). However 1t has been argued 1n literature that CRFs
and MEMMs overcome limitations posed by HMMs. CRFs and
MEMMs enables longer term interaction among observations which
HMMs don'’t.

Proposed Model

The model should incorporate different nuances in the human activity.
An activity comprises of a series of sub-activities done 1n some par-
ticular order. In order to incorporate the hierarchical nature of human
activity, a maximum entropy Markov model is proposed [Fig 1.] and
its salient features are explained as below:

e zldenote the features extracted from the articulated skeleton model
at time frame t.

e Every frame 1s connected to high-level activities through the mid-
level sub-activities. High-level activities do not change every frame,
we do not index them by time. Rather, we simply write 2’ to denote
the it" high-level activity. Activity ¢ occurs from time ¢;1, 7 to time
t;.

e Every frame is connected to a sub activity.y’ represents the sub ac-
tivity connected to frame at time ¢. The sub activities are intern

connected in sets to an activity. Thus, {ytitl . ylilis the set of
sub-activities connected to activity 2’
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Figure 1: Proposed Model

Feature Extraction

Skeletal Features

PrimeSense provides a system for skeleton tracking from RGBD
data.It gives us the three-dimensional Euclidean coordinates for fifteen
joints, and rotation matrices for their orientations. All measurements
are with respect to the frame of the sensor. Features computed from
this data are as follows:

1. Body pose: Since features with respect to the sensor are not use-
ful, the rotation matrices for 10 joints are calculated with respect to
the torso, and represented using quaternions. Whether a person 1s
standing or sitting, or leaning over 1s computed using the position
each foot with with respect to the torso, and by computing head and
hip joint angles with respect to the vertical.

2. Hand Position: The position of the two hands are computed with
respect to the head and the torso. The hand positions are also ob-
served for the last six frames, and the maximum and minimum hand
positions are extracted from them.

3. Motion Information Nine frames are selected from the last three
seconds, and the joint rotations that have occurred are computed
with respect to each these nine frames.

HOG Features

Histogram of Oriented Gradient (HOG) features are computed, which
give us a count of how frequently a particular gradient 1s seen in the
ROI of an image. Using the skeletal data from PrimeSense, a bounding
box 1s drawn around the head, torso, left arm, right arm. HOG features
are then computed 1nside each of these bounding boxes.

Learning and Inference

Learning

A Gaussian Mixture Model 1s used to cluster the original data, and
each individual cluster is treated as a separate sub-activity. Clusters
are also generated from some negative examples (no activity happen-
ing), so that the system 1s not prone to errors on observing random
activities. We need to evaluate the values for the following terms from
the training data in order to perform inference.

1. P(y|2"): This term models the dependence of the sub-activity label
y' on the input features z'. The GMM used in the previous step is
used here too.

2. P(yti=m|yti=m=L%) . For all activities except neutral, this ta-
ble 1s built from observing the transition of posterior probabil-
ity from the soft cluster of Gaussian Mixture model at each
frame. For neutral activities, P(y/ |yti—m=La=N) « 1 —

ti—my, ti—m—1,2=N
0Ny Myt TR EE)

3. P(zj|z;_1) Set manually.

Inference

The joint probability 1s computed as follows:
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The unknown terms in the equation above are derived as :
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From the model, the following conditional independence assumption
are made: y'! and 2 are independent from ! given y’ is made and
under this we get
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Finally the entire formula can be written as :
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This formula can be factorized as follows :
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To maximize the probability the individual terms are maximized as:
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Graph Selection

Using the above results we can find the set of 4’ ’s that maximize the
joint probability P(z;, y'i—1T1 ... y!O;, z;_1), the probability of an ac-
tivity 2’ being associated with the it substructure and the previous ac-
tivity. Our task 1s to use that to compute the probability of % given all
observations up to this point. Simply trying all the possibilities would
be intractable and so we use a dynamic programming approach which
1s explained as follows :
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e We are at some time ¢; we wish to select the optimal graph struc-
ture given everything we have seen so far. We will define the graph
structure 1nductively based on graph structures that were chosen at
previous points in time. Let GGy represent the graph structure that
was chosen at some time ¢’ < t. As a base case, G is always the
empty graph.

e For every t' < t, define a candidate graph structure éf consisting
of Gy, followed by a single substructure from time t' + 1 to time ¢
connected to a single high-level node z°.

e Given the set of candidate structures {é?!l <t < t}, the plan is
to find the graph structure and high-level activity to maximize the
likelihood given the set of observations so far z; € Z.

e Let O be the set of all observations so far. Then P(z;|O; égl) is given
by the following equation :
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e The first factor inside the summation is calculated through dy-
namic programming and the second factor is calculated from
P(z;, yt1tl . yliO;, 2;_1) as described earlier.

e The optimal probability of having node i be a specific activity z* is
computed as follows and is stored for the purpose of dynamic pro-
gramming.

P(%;|0;Gt) = max P(z;|0:; éi’)

t'<t

e Thus the prediction at time t is made by the following :

activity; = arg max P(z;|0O) = arg max max P(z;|O; CNJ?)
Z; Zi <t

The selected graph 1s shown to be optimal and the time complexity for
the entire calculation is O(n - m - T? - t).

Results

The results show an average precision/recall of 84.7%/83.2% in detect-
ing the correct activity when the person was seen before 1n the training
set and 67.9%/155.5% when the person was not seen before. The re-
sults are summarized in the table below.
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Figure 2: Comparison of different models



